§5.2 Solving the honeycomb lattice model
The no-vortex sector
In Major ana form, the Hamiltonian can be written as:

$$
H=H_{1}+H_{2}
$$

with

$$
\begin{aligned}
& H_{1}=\frac{i}{4} \sum_{i j} 2 j u_{i j} \cdot c_{i} c_{j}, \\
& H_{2}=\frac{i}{4} \sum_{i j} 2 k \sum_{k} u_{i k} u_{j k} c_{i} c_{j}
\end{aligned}
$$

Focus on the case when $u_{i j}=+1 \forall i j g$
\rightarrow lowest energy state resides in this sector (Lieb's theorem)
Fourier transforming the Majoran modes, gives

$$
a_{\vec{r}}=\sum_{\vec{p}} e^{-i \vec{p} \cdot \vec{r}} a_{\vec{p}} \quad\binom{\text { denude Major }}{\text { modes by a and b) }}
$$

and similarly for $b_{\vec{r}}$ and $c_{\vec{r}}$

$$
\begin{aligned}
\rightarrow H_{1} & =\frac{i}{4} 2 J \sum_{\vec{r}} a_{\vec{r}}\left(b_{\vec{r}+\vec{s}_{1}}+b_{\vec{r}+\vec{s}_{2}}+b_{\vec{r}}+\vec{s}_{3}\right)+h . c . \\
& =\frac{i}{4} 2 J \sum_{\vec{r}, \vec{p}^{\prime}, \vec{p}}\left(\sum_{\alpha=1,2,3} e^{-i \vec{p} \cdot \vec{r}-i \vec{p}^{\prime} \cdot\left(\vec{r}+\vec{s}_{\alpha}\right)}\right) a_{\vec{p}} b_{\vec{p}^{\prime}}+\text { h.c. } \\
& =\frac{i}{4} 2 J \sum_{\vec{p}}\left(\sum_{\alpha=1,2,3} e^{-i \vec{p} \cdot \vec{s}_{2}}\right) a_{-\vec{p}} b_{\vec{p}}+\text { h.c. }
\end{aligned}
$$

To simplify, define $\widetilde{a}=e^{-i \pi / 4} q, \tilde{b}=e^{i \pi / 4} b$ and

$$
\begin{array}{ll}
& f(\vec{p})=2 \gamma \sum_{\alpha=1,2,3} e^{-i \vec{p} \cdot \vec{s}_{\alpha}} \\
\longrightarrow & H_{1}=\frac{1}{4} \sum_{\vec{p}} f(\vec{p}) \widetilde{a}_{\vec{p}}^{+} \tilde{b}_{\vec{p}}+\text { hic. }
\end{array}
$$

Moreover, for next-to-nearest neighbour interactions we get

$$
\begin{aligned}
H_{2}= & \frac{i K}{2} \sum_{\vec{r}_{1} \vec{p}_{1} \vec{p}^{\prime}} \\
& \left(e^{-i \vec{p}^{\prime} \cdot \vec{n}_{1}}-e^{-i \vec{p}^{\prime} \cdot \vec{n}_{2}}+e^{i \vec{p}^{\prime} \cdot\left(\vec{n}_{1}-\vec{n}_{2}\right.}\right) \\
& \left.\times e^{i \vec{p}^{\prime} \cdot \vec{u}_{2}}-e^{-i \vec{p}^{\prime} \cdot\left(\vec{n}_{1}-\vec{n}_{2}\right)}\right) \\
& =\frac{1}{4} \sum_{\vec{p}} \Delta\left(\vec{p}+\vec{p}^{\prime} \cdot \vec{r}\right)\left(\vec{p} c_{\vec{p}^{\prime}}^{\prime}\right. \\
& \left.\tilde{a}_{\vec{p}}-\tilde{b}_{\vec{p}}^{+} \tilde{b}_{\vec{p}}\right)
\end{aligned}
$$

where

$$
\Delta(\vec{p})=4 k\left(-\sin \vec{p} \cdot \vec{n}_{1}+\sin \vec{p} \cdot \vec{n}_{2}+\sin \vec{p} \cdot\left(\vec{n}_{1}-\vec{n}_{2}\right)\right)
$$

Combining H_{1} and H_{2}, we get

$$
H=\frac{1}{4} \sum_{\vec{p}}\left(\widetilde{a}_{\vec{p}}^{+} \tilde{b}_{\vec{p}}^{\dagger}\right) \underbrace{\left(\begin{array}{cc}
\Delta(\vec{p}) & f(\vec{p}) \\
f(\vec{p})^{*} & -\Delta(\vec{p})
\end{array}\right)}_{=: H(\vec{p})}\binom{\tilde{a}_{\vec{p}}}{\tilde{b}_{\vec{p}}}
$$

\rightarrow energy eigenvalue of Majorana fermions can be found by direct diagonalization of $H(\vec{p})$
For $k=0 \quad(\Delta(\vec{p})=0)$, one gets

$$
\varepsilon(\vec{p})= \pm|f(\vec{p})|= \pm \frac{7}{2} \sqrt{1+4 \cos ^{2} \frac{\sqrt{3} p}{2}+4 \cos \frac{3 p_{y}}{2} \cos \frac{\sqrt{3} p_{x}}{2}}
$$

"dispersion relation"
positive energy: conductance band negative energy: valence band $\sum(\vec{p})=0$ for certain isolated values of momentum \vec{p}, known as Fermi pts. example: $\vec{p}_{ \pm}=\left(\frac{4 \pi}{3 \sqrt{3}}, 0\right)$

Continuous limit approximation
The ground state is the state in which valence band is fully occupied continuum limit corresponds to large wavelength / small momentum limit
Set $k=0$:
expanding near the Fermi points, gives:

$$
\begin{aligned}
& f\left(\vec{p}_{+}+\vec{p}\right)=-3 y\left(p_{x}+i p_{y}\right)+G\left(\vec{p}^{2}\right) \\
& f\left(\vec{p}_{-}+\vec{p}\right)=3 \gamma\left(p_{x}-i p_{y}\right)+G\left(\vec{p}^{2}\right)
\end{aligned}
$$

\rightarrow substituting into the Hamiltonian:

$$
\begin{aligned}
& H_{+}(\vec{p})=H\left(\vec{p}_{+}+\vec{p}\right)=3 y\left(-\sigma^{x} p_{x}+\sigma^{y} p_{y}\right) \\
& H_{-}(\vec{p})=H\left(\bar{p}_{-}+\vec{p}\right)=3 y\left(\sigma^{x} p_{x}+\sigma^{y} p_{y}\right)
\end{aligned}
$$

$K \neq 0:$

$$
\begin{aligned}
& \Delta\left(\vec{p}_{+}+\vec{p}\right)=6 \sqrt{3} k+O\left(\vec{p}^{2}\right), \\
& \Delta\left(\vec{p}_{-}\right)=-\Delta\left(\vec{p}_{+}\right)
\end{aligned}
$$

\rightarrow creates energy gap $\Delta=6 \sqrt{3} k$ between valence and conductance band

Combining the two Hamiltonian $H_{+}(\vec{p})$ and $H_{-}(\vec{p})$ to ge the and treating the two Fermi points as two psendo-spin components gives in the basis $\Psi(\vec{p})=\left(\widetilde{a}_{+}, \widetilde{b}_{+}, \tilde{b}_{-}, \tilde{a}_{-}\right)^{\top}$:

$$
\begin{aligned}
H_{\text {tot }}(\vec{p}) & =\left(\begin{array}{cccc}
\Delta & -p & 0 & 0 \\
-\bar{p} & -\Delta & 0 & 0 \\
0 & 0 & \Delta & p \\
0 & 0 & \bar{p} & -\Delta
\end{array}\right) \\
& =-\sigma^{z} \otimes \sigma^{x} p_{x}+\sigma^{z} \otimes \sigma^{y} P_{y}+\mathbb{1} \otimes \sigma^{z} \Delta
\end{aligned}
$$

where $p=p_{x}+i p_{y}, \quad \bar{p}=p_{x}-i p_{y}$
note: $\left\{\sigma^{z} \otimes \sigma^{x}, \sigma^{z} \otimes \sigma^{y}\right\}=0, \quad\left(\sigma^{z} \otimes \sigma^{x}\right)^{2}=\left(\sigma^{z} \otimes^{y}\right)^{2}=1$
\rightarrow Dirac operator with mass 1

Topological properties:
verify that the matrices

$$
\Sigma_{1}=\sigma^{z} \otimes \sigma^{x}, \quad \sum_{2}=\sigma^{z} \otimes \sigma^{y}, \quad \Sigma_{3}=1 \otimes \sigma^{z}
$$

satisfy the su(1) algebra

$$
\begin{aligned}
& \qquad\left[\sum_{i}, \sum_{j} \cdot\right]=2 i \varepsilon_{i j k} \sum_{k} \\
& \rightarrow H_{\text {tot }}(\vec{p})=\vec{\sum} \cdot \vec{r}(\vec{p}), \\
& \text { where } \vec{\sum}=\left(\Sigma_{1}, \Sigma_{2}, \Sigma_{3}\right)
\end{aligned}
$$ and $\vec{n}(\vec{p})=\left(-p_{x}, p_{y}, \Delta\right)$

Consider the normalized vector $\hat{\bar{n}}=\frac{\vec{n}}{|\vec{n}|}$ Note that the momentum is periodic in both p_{y} and $p_{y} \rightarrow$ takes values on a torus
moreover: all possible values of \hat{n} define the unit sphere

One has:

- $\hat{n}\left(\vec{P}_{+}\right)=(0,0,1)$
- $\hat{n}\left(\vec{P}_{-}\right)=(0,0,-1)$
- $\hat{n}(\vec{P}||\bar{P}| \gg A)$ is oriented along equator
\rightarrow for $\Delta \neq 0$, the map is one to -one:
its Chern-number is

$$
\begin{aligned}
\nu & =\frac{1}{4 \pi} \iint d p_{x} d p_{y} \frac{\partial \hat{n}}{\partial p_{x}} \times \frac{\partial \hat{u}}{\partial p_{y}} \cdot \hat{n} \\
& =\frac{\Delta}{|\Delta|}= \pm 1 \quad(\operatorname{sign}(\Delta))
\end{aligned}
$$

\rightarrow for $K \neq 0$ the Hamiltonian belongs to a topologically non-trivial class

